// A naive implementation of an immediate mode gui. #ifndef ED_UI_INCLUDED #define ED_UI_INCLUDED #define MAX_UI_ELEMENTS 2048 // TODO: replace this with functions #define _FONT_WIDTH 16 #define _FONT_HEIGHT 32 #define _elm(index) (&cx->frame_elements.data[index]) #define _flags(index, flgs) ((_elm(index)->flags & (flgs)) == (flgs)) #define _first(index) (_elm(index)->first) #define _last(index) (_elm(index)->last) #define _next(index) (_elm(index)->next) #define _prev(index) (_elm(index)->prev) #define _parent(index) (_elm(index)->parent) #define _first_ref(index) (_elm(_first(index))) #define _last_ref(index) (_elm(_last(index))) #define _next_ref(index) (_elm(_next(index))) #define _prev_ref(index) (_elm(_prev(index))) #define _parent_ref(index) (_elm(_parent(index))) #include #include #include #include "ht.h" #include "ed_array.h" typedef enum { UI_AXIS_HORIZONTAL, UI_AXIS_VERTICAL, } ui_axis; typedef enum { UI_SEMANTIC_SIZE_FIT_TEXT, UI_SEMANTIC_SIZE_CHILDREN_SUM, UI_SEMANTIC_SIZE_FILL, UI_SEMANTIC_SIZE_EXACT, UI_SEMANTIC_SIZE_PERCENT_OF_PARENT, } ui_semantic_size_t; typedef struct { ui_semantic_size_t type; union { uint32_t integer; }; } ui_semantic_size; typedef struct { ui_axis axis; ui_semantic_size semantic_size[2]; uint32_t computed_size[2]; uint32_t computed_pos[2]; } ui_size; // UI Element data persisted across frames typedef struct { string label; ui_size size; size_t last_instantiated_index; } ui_element_cache_data; typedef enum { UI_FLAG_CLICKABLE = 0b000000001, UI_FLAG_HOVERABLE = 0b000000010, UI_FLAG_SCROLLABLE = 0b000000100, UI_FLAG_DRAW_TEXT = 0b000001000, UI_FLAG_DRAW_BORDER = 0b000010000, UI_FLAG_DRAW_BACKGROUND = 0b000100000, UI_FLAG_ROUNDED_BORDER = 0b001000000, UI_FLAG_FLOATING = 0b010000000, UI_FLAG_CUSTOM_DRAW_FUNC = 0b100000000, } ui_flags; // Ephemeral frame only UI Element data typedef struct { size_t index; string key; string label; ui_size size; ui_flags flags; // optional types size_t first; size_t last; size_t next; size_t prev; size_t parent; } ui_element_frame_data; arrayTemplate(ui_element_frame_data); typedef struct { ed_ht cached_elements; array(ui_element_frame_data) frame_elements; array(ui_element_frame_data) frame_floating_elements; size_t frame_index; uint32_t canvas_size[2]; size_t current_parent; } ui_context; void ui_compute_layout(ui_context *cx, size_t element_index); #ifdef ED_UI_IMPLEMENTATION ui_context init_ui_context() { ed_ht cached_elements = ht_create(MAX_UI_ELEMENTS, sizeof(ui_element_cache_data)); array(ui_element_frame_data) frame_elements = newArray(ui_element_frame_data, MAX_UI_ELEMENTS); array(ui_element_frame_data) frame_floating_elements = newArray(ui_element_frame_data, MAX_UI_ELEMENTS); return (ui_context) { .cached_elements = cached_elements, .frame_elements = frame_elements, .frame_floating_elements = frame_floating_elements, .frame_index = 0, }; } size_t ui_element(ui_context *cx, string label) { ui_element_frame_data frame_data = (ui_element_frame_data) { .index = cx->frame_elements.size, // TODO: don't just set this to label, because then elements // with the same label can't be created together .key = label, .label = label, .first = -1, .last = -1, .next = -1, .prev = cx->frame_elements.data[cx->current_parent].last, .parent = cx->current_parent, }; // Get cached element data ui_element_cache_data *cache_data = ht_get(&cx->cached_elements, label); if (cache_data) { cache_data->last_instantiated_index = cx->frame_index; frame_data.size = cache_data->size; } else { assert("couldn't insert into ui element cache" && ht_set(&cx->cached_elements, label, &(ui_element_cache_data) { .label = label, .size = { 0 }, .last_instantiated_index = cx->frame_index, })); } pushArray(ui_element_frame_data, &cx->frame_elements, frame_data); if (frame_data.prev >= 0) { _prev_ref(frame_data.index)->next = frame_data.index; } if (_elm(cx->current_parent)->first < 0) { _elm(cx->current_parent)->first = frame_data.index; } _elm(cx->current_parent)->last = frame_data.index; return frame_data.index; } static uint32_t _ui_ancestor_size(ui_context *cx, size_t element_index, ui_axis axis) { if (element_index < 0 || _parent(element_index) < 0) return 0; switch (_parent_ref(element_index)->size.semantic_size[axis].type) { case UI_SEMANTIC_SIZE_FIT_TEXT: case UI_SEMANTIC_SIZE_FILL: case UI_SEMANTIC_SIZE_EXACT: case UI_SEMANTIC_SIZE_PERCENT_OF_PARENT: return _parent_ref(element_index)->size.computed_size[axis]; break; case UI_SEMANTIC_SIZE_CHILDREN_SUM: return _ui_ancestor_size(cx, _parent(element_index), axis); break; } } static void _ui_compute_simple_layout(ui_context *cx, ui_element_frame_data *elm, ui_axis axis, bool *post_compute) { switch (elm->size.semantic_size[axis].type) { case UI_SEMANTIC_SIZE_FIT_TEXT: if (axis == UI_AXIS_HORIZONTAL) { elm->size.computed_size[axis] = elm->label.len * _FONT_WIDTH; } else if (axis == UI_AXIS_VERTICAL) { elm->size.computed_size[axis] = _FONT_WIDTH; } break; case UI_SEMANTIC_SIZE_CHILDREN_SUM: post_compute[axis] = true; break; case UI_SEMANTIC_SIZE_FILL: // TODO: set to ancestor size for floating break; case UI_SEMANTIC_SIZE_EXACT: elm->size.computed_size[axis] = elm->size.semantic_size[axis].integer; break; case UI_SEMANTIC_SIZE_PERCENT_OF_PARENT: { float semantic_value = (float)elm->size.semantic_size[axis].integer; elm->size.computed_size[axis] = (uint32_t)((float)(_ui_ancestor_size(cx, elm->index, axis)) * (semantic_value/100.0)); } break; } } static void _ui_compute_children_layout(ui_context *cx, ui_element_frame_data *elm) { uint32_t child_size[2] = { 0 }; // NOTE: the number of fills for the opposite axis of this box needs to be 1 // because it will never get incremented in the loop below and cause a divide by zero // and the number of fills for the axis of the box needs to start at zero or else it will // be n+1 causing incorrect sizes uint32_t num_fills[2] = { 1 }; num_fills[elm->size.axis] = 0; // TODO: maybe just use the actual data instead of copying? uint32_t elm_size[2] = { elm->size.computed_size[0], elm->size.computed_size[1] }; size_t child_index = elm->first; do { ui_compute_layout(cx, child_index); if (_elm(child_index)->size.semantic_size[elm->size.axis].type == UI_SEMANTIC_SIZE_FILL) { num_fills[elm->size.axis] += 1; } else { child_size[elm->size.axis] += _elm(child_index)->size.computed_size[elm->size.axis]; } } while ((child_index = _next(child_index)) >= 0); child_index = elm->first; do { for (size_t axis = UI_AXIS_HORIZONTAL; axis < UI_AXIS_VERTICAL; ++axis) { if (_elm(child_index)->size.semantic_size[axis].type == UI_SEMANTIC_SIZE_FILL) { _elm(child_index)->size.computed_pos[axis] = (elm_size[axis] - child_size[axis]) / num_fills[axis]; } } ui_compute_layout(cx, child_index); } while ((child_index = _next(child_index)) >= 0); } void ui_compute_layout(ui_context *cx, size_t element_index) { if (element_index <= 0) return; ui_axis axis = UI_AXIS_HORIZONTAL; __auto_type elm = _elm(element_index); if (_parent(element_index) >= 0 && (_elm(element_index)->flags & UI_FLAG_FLOATING) > 0) { __auto_type parent = _parent_ref(element_index); axis = parent->size.axis; elm->size.computed_pos[0] = parent->size.computed_pos[0]; elm->size.computed_pos[1] = parent->size.computed_pos[1]; // TODO: implement scrolling // elm->size.computed_pos[axis] += parent.scroll_offset; } if (!_flags(element_index, UI_FLAG_FLOATING) && _prev(element_index) >= 0) { __auto_type prev = _prev_ref(element_index); if (prev>= 0) { elm->size.computed_pos[axis] = prev->size.computed_pos[axis] + prev->size.computed_size[axis]; } } bool post_compute[2] = { false, false }; _ui_compute_simple_layout(cx, elm, UI_AXIS_HORIZONTAL, post_compute); _ui_compute_children_layout(cx, elm); // NOTE(pcleavelin): the only difference between these two blocks is the ordering of the switch block // they can probably be merged if (post_compute[UI_AXIS_HORIZONTAL]) { elm->size.computed_size[UI_AXIS_HORIZONTAL] = 0; size_t child_index = elm->first; do { __auto_type child = _elm(child_index); switch (elm->size.axis) { case UI_AXIS_HORIZONTAL: elm->size.computed_size[UI_AXIS_HORIZONTAL] += child->size.computed_size[UI_AXIS_HORIZONTAL]; break; case UI_AXIS_VERTICAL: if (child->size.computed_size[UI_AXIS_HORIZONTAL] > elm->size.computed_size[UI_AXIS_HORIZONTAL]) { elm->size.computed_size[UI_AXIS_HORIZONTAL] = child->size.computed_size[UI_AXIS_HORIZONTAL]; } break; } } while ((child_index = _next(child_index)) >= 0); } if (post_compute[UI_AXIS_VERTICAL]) { elm->size.computed_size[UI_AXIS_VERTICAL] = 0; size_t child_index = elm->first; do { __auto_type child = _elm(child_index); switch (elm->size.axis) { case UI_AXIS_HORIZONTAL: if (child->size.computed_size[UI_AXIS_VERTICAL] > elm->size.computed_size[UI_AXIS_VERTICAL]) { elm->size.computed_size[UI_AXIS_VERTICAL] = child->size.computed_size[UI_AXIS_VERTICAL]; } break; case UI_AXIS_VERTICAL: elm->size.computed_size[UI_AXIS_VERTICAL] += child->size.computed_size[UI_AXIS_VERTICAL]; break; } } while ((child_index = _next(child_index)) >= 0); } } #endif #endif