odin_editor/src/ui/imm.odin

570 lines
15 KiB
Plaintext

package ui
import "core:fmt"
import "core:strings"
import "core:math"
import "vendor:raylib"
import "../theme"
root: ^Box = nil;
current_parent: ^Box = nil;
persistent: map[Key]^Box = nil;
current_interaction_index: int = 0;
clips: [dynamic]Rect = nil;
Rect :: struct {
pos: [2]int,
size: [2]int,
}
Key :: struct {
label: string,
value: int,
}
Interaction :: struct {
clicked: bool,
}
Flag :: enum {
Clickable,
Hoverable,
Scrollable,
DrawText,
DrawBorder,
DrawBackground,
}
SemanticSizeKind :: enum {
FitText,
Exact,
ChildrenSum,
Fill,
PercentOfParent,
}
SemanticSize :: struct {
kind: SemanticSizeKind,
value: int,
}
Axis :: enum {
Horizontal = 0,
Vertical = 1,
}
Box :: struct {
first: ^Box,
last: ^Box,
next: ^Box,
prev: ^Box,
parent: ^Box,
key: Key,
last_interacted_index: int,
flags: bit_set[Flag],
label: string,
axis: Axis,
semantic_size: [2]SemanticSize,
computed_size: [2]int,
computed_pos: [2]int
}
init :: proc() {
if persistent == nil {
persistent = make(map[Key]^Box);
}
if clips == nil {
clips = make([dynamic]Rect);
}
root = new(Box);
root.key = gen_key("root", 69);
current_parent = root;
}
gen_key :: proc(label: string, value: int) -> Key {
key_label := ""
if current_parent == nil || len(current_parent.key.label) < 1 {
key_label = strings.clone(label);
} else {
key_label = fmt.aprintf("%s:%s", current_parent.key.label, label);
}
return Key {
label = key_label,
value = value,
};
}
make_box :: proc(key: Key, label: string, flags: bit_set[Flag], axis: Axis, semantic_size: [2]SemanticSize) -> ^Box {
box: ^Box = nil;
if cached_box, exists := persistent[key]; exists {
if cached_box.last_interacted_index < current_interaction_index {
old_cached_box := persistent[key];
free(old_cached_box);
box = new(Box);
persistent[key] = box;
} else {
box = cached_box;
}
} else {
box = new(Box);
persistent[key] = box;
}
box.key = key;
box.label = label;
box.first = nil;
box.last = nil;
box.next = nil;
box.prev = current_parent.last;
box.parent = current_parent;
box.flags = flags;
box.axis = axis;
box.semantic_size = semantic_size;
box.computed_pos = {};
box.computed_size = {};
if current_parent.last != nil {
current_parent.last.next = box;
}
if current_parent.first == nil {
current_parent.first = box;
}
current_parent.last = box;
return box;
}
make_semantic_size :: proc(kind: SemanticSizeKind, value: int = 0) -> SemanticSize {
return SemanticSize {
kind = kind,
value = value
};
}
FitText :[2]SemanticSize: {
SemanticSize {
kind = .FitText,
},
SemanticSize {
kind = .FitText,
}
};
ChildrenSum :[2]SemanticSize: {
SemanticSize {
kind = .ChildrenSum,
},
SemanticSize {
kind = .ChildrenSum,
}
};
push_box :: proc(label: string, flags: bit_set[Flag], axis: Axis = .Horizontal, semantic_size: [2]SemanticSize = FitText, value: int = 0) -> ^Box {
key := gen_key(label, value);
box := make_box(key, label, flags, axis, semantic_size);
return box;
}
push_parent :: proc(box: ^Box) {
current_parent = box;
}
pop_parent :: proc() {
if current_parent.parent != nil {
current_parent = current_parent.parent;
}
}
test_box :: proc(box: ^Box) -> Interaction {
return Interaction {
clicked = false,
};
}
delete_box_children :: proc(box: ^Box, keep_persistent: bool = true) {
iter := BoxIter { box.first, 0 };
for box in iterate_box(&iter) {
delete_box(box, keep_persistent);
}
}
delete_box :: proc(box: ^Box, keep_persistent: bool = true) {
delete_box_children(box, keep_persistent);
if !(box.key in persistent) || !keep_persistent {
delete(box.key.label);
free(box);
}
}
prune :: proc() {
iter := BoxIter { root.first, 0 };
for box in iterate_box(&iter) {
delete_box_children(box);
if !(box.key in persistent) {
free(box);
}
}
root_key := root.key;
root^ = {
key = root_key,
};
current_parent = root;
}
ancestor_size :: proc(box: ^Box, axis: Axis) -> int {
if box == nil || box.parent == nil {
return root.computed_size[axis];
}
switch box.parent.semantic_size[axis].kind {
case .FitText: fallthrough
case .Exact: fallthrough
case .Fill: fallthrough
case .PercentOfParent:
return box.parent.computed_size[axis];
case .ChildrenSum:
return ancestor_size(box.parent, axis);
}
return 1337;
}
compute_layout :: proc(canvas_size: [2]int, font_width: int, font_height: int, box: ^Box = root) {
if box == nil { return; }
axis := Axis.Horizontal;
if box.parent != nil {
axis = box.parent.axis;
box.computed_pos = box.parent.computed_pos;
}
if box.prev != nil {
box.computed_pos[axis] = box.prev.computed_pos[axis] + box.prev.computed_size[axis];
}
compute_children := true;
if box == root {
box.computed_size = canvas_size;
} else {
switch box.semantic_size.x.kind {
case .FitText: {
// TODO: don't use hardcoded font size
box.computed_size.x = len(box.label) * font_width;
}
case .Exact: {
box.computed_size.x = box.semantic_size.x.value;
}
case .ChildrenSum: {
compute_children = false;
box.computed_size.x = 0;
iter := BoxIter { box.first, 0 };
for child in iterate_box(&iter) {
compute_layout(canvas_size, font_width, font_height, child);
switch box.axis {
case .Horizontal: {
box.computed_size.x += child.computed_size.x;
}
case .Vertical: {
if child.computed_size.x > box.computed_size.x {
box.computed_size.x = child.computed_size.x;
}
}
}
}
}
case .Fill: {
}
case .PercentOfParent: {
box.computed_size.x = int(f32(ancestor_size(box, .Horizontal))*(f32(box.semantic_size.x.value)/100.0));
}
}
switch box.semantic_size.y.kind {
case .FitText: {
// TODO: don't use hardcoded font size
box.computed_size.y = font_height;
}
case .Exact: {
box.computed_size.y = box.semantic_size.y.value;
}
case .ChildrenSum: {
compute_children = false;
should_post_compute := false;
number_of_fills := 0;
box.computed_size.y = 0;
parent_size := ancestor_size(box, .Vertical);
iter := BoxIter { box.first, 0 };
for child in iterate_box(&iter) {
compute_layout(canvas_size, font_width, font_height, child);
if child.semantic_size.y.kind == .Fill {
number_of_fills += 1;
should_post_compute := true;
}
switch box.axis {
case .Horizontal: {
if child.computed_size.y > box.computed_size.y {
box.computed_size.y = child.computed_size.y;
}
}
case .Vertical: {
box.computed_size.y += child.computed_size.y;
}
}
}
// if should_post_compute {
// iter := BoxIter { box.first, 0 };
// for child in iterate_box(&iter) {
// if compute_layout(canvas_size, font_width, font_height, child) {
// child.computed_size.y = (parent_size - box.computed_size.y) / number_of_fills;
// }
// }
// }
}
case .Fill: {
}
case .PercentOfParent: {
box.computed_size.y = int(f32(ancestor_size(box, .Vertical))*(f32(box.semantic_size.y.value)/100.0));
}
}
}
if compute_children {
iter := BoxIter { box.first, 0 };
should_post_compute := false;
child_size: [2]int = {0,0};
// NOTE: the number of fills for the opposite axis of this box needs to be 1
// because it will never get incremented in the loop below and cause a divide by zero
// and the number of fills for the axis of the box needs to start at zero or else it will
// be n+1 causing incorrect sizes
number_of_fills: [2]int = {1,1};
number_of_fills[box.axis] = 0;
our_size := box.computed_size;
for child in iterate_box(&iter) {
compute_layout(canvas_size, font_width, font_height, child);
if child.semantic_size[box.axis].kind == .Fill {
number_of_fills[box.axis] += 1;
should_post_compute = true;
} else {
child_size[box.axis] += child.computed_size[box.axis];
}
}
if should_post_compute {
iter := BoxIter { box.first, 0 };
for child in iterate_box(&iter) {
for axis in 0..<2 {
if child.semantic_size[axis].kind == .Fill {
if child_size[axis] >= our_size[axis] {
child.computed_size[axis] = our_size[axis] / number_of_fills[axis];
} else {
child.computed_size[axis] = (our_size[axis] - child_size[axis]) / number_of_fills[axis];
}
}
}
compute_layout(canvas_size, font_width, font_height, child);
}
}
}
}
push_clip :: proc(pos: [2]int, size: [2]int) {
rect := Rect { pos, size };
if len(clips) > 0 {
parent_rect := clips[len(clips)-1];
if rect.pos.x >= parent_rect.pos.x &&
rect.pos.y >= parent_rect.pos.y &&
rect.pos.x < parent_rect.pos.x + parent_rect.size.x &&
rect.pos.y < parent_rect.pos.y + parent_rect.size.y
{
//rect.pos.x = math.max(rect.pos.x, parent_rect.pos.x);
//rect.pos.y = math.max(rect.pos.y, parent_rect.pos.y);
rect.size.x = math.min(rect.pos.x + rect.size.x, parent_rect.pos.x + parent_rect.size.x);
rect.size.y = math.min(rect.pos.y + rect.size.y, parent_rect.pos.y + parent_rect.size.y);
rect.size.x -= rect.pos.x;
rect.size.y -= rect.pos.y;
} else {
rect = parent_rect;
}
}
raylib.BeginScissorMode(
i32(rect.pos.x),
i32(rect.pos.y),
i32(rect.size.x),
i32(rect.size.y)
);
append(&clips, rect);
}
pop_clip :: proc() {
raylib.EndScissorMode();
if len(clips) > 0 {
rect := pop(&clips);
raylib.BeginScissorMode(
i32(rect.pos.x),
i32(rect.pos.y),
i32(rect.size.x),
i32(rect.size.y)
);
}
}
draw :: proc(font: raylib.Font, font_width: int, font_height: int, box: ^Box = root) {
if box == nil { return; }
// NOTE: for some reason if you place this right before the
// for loop, the clipping only works for the first child. Compiler bug?
push_clip(box.computed_pos, box.computed_size);
defer pop_clip();
if .DrawBorder in box.flags {
raylib.DrawRectangleLines(
i32(box.computed_pos.x),
i32(box.computed_pos.y),
i32(box.computed_size.x),
i32(box.computed_size.y),
theme.get_palette_raylib_color(.Background4)
);
}
if .DrawBackground in box.flags {
raylib.DrawRectangle(
i32(box.computed_pos.x),
i32(box.computed_pos.y),
i32(box.computed_size.x),
i32(box.computed_size.y),
theme.get_palette_raylib_color(.Background1)
);
}
if .DrawText in box.flags {
for codepoint, index in box.label {
raylib.DrawTextCodepoint(
font,
rune(codepoint),
raylib.Vector2 { f32(box.computed_pos.x + index * font_width), f32(box.computed_pos.y) },
f32(font_height),
theme.get_palette_raylib_color(.Foreground1)
);
}
}
iter := BoxIter { box.first, 0 };
for child in iterate_box(&iter) {
draw(font, font_width, font_height, child);
}
}
BoxIter :: struct {
box: ^Box,
index: int,
}
iterate_box :: proc(iter: ^BoxIter, print: bool = false) -> (box: ^Box, idx: int, cond: bool) {
if iter.box == nil {
return nil, iter.index, false;
}
box = iter.box;
idx = iter.index;
iter.box = iter.box.next;
iter.index += 1;
return box, iter.index, true;
}
debug_print :: proc(box: ^Box, depth: int = 0) {
iter := BoxIter { box.first, 0 };
for box, idx in iterate_box(&iter, true) {
for _ in 0..<(depth*6) {
fmt.print("-");
}
if depth > 0 {
fmt.print(">");
}
fmt.println(idx, "Box", box.label, "#", box.key.label, "first", transmute(rawptr)box.first, "parent", transmute(rawptr)box.parent, box.computed_size);
debug_print(box, depth+1);
}
if depth == 0 {
fmt.println("persistent");
for p in persistent {
fmt.println(p);
}
}
}
spacer :: proc(label: string) -> ^Box {
return push_box(label, {}, semantic_size = {make_semantic_size(.Fill, 0), make_semantic_size(.Fill, 0)});
}
button :: proc(label: string) -> Interaction {
box := push_box(label, {.Clickable, .Hoverable, .DrawText, .DrawBorder, .DrawBackground});
return test_box(box);
}
two_buttons_test :: proc(label1: string, label2: string) {
push_parent(push_box("two_button_container", {.DrawBorder}, .Vertical, semantic_size = ChildrenSum));
button("1");
button("2");
button(label1);
button(label2);
button("5");
button("6");
push_parent(push_box("two_button_container_inner", {.DrawBorder}, semantic_size = ChildrenSum));
button("second first button");
{
push_parent(push_box("two_button_container_inner", {.DrawBorder}, .Vertical, semantic_size = {make_semantic_size(.PercentOfParent, 50), { .Exact, 256}}));
defer pop_parent();
button("first inner most button");
button("inner_button2");
button("inner_button3");
}
button("inner_button3");
pop_parent();
button("Help me I'm falling");
pop_parent();
}